The Modal-Vertical-Beam(MVB) Transmission Loss Analysis

H.F.Zhao, H.L.Ge, X.Y.Gong E.C.Shang

(State Key Lab. Of Oceanic Acoustics, Hangzhou, 310012)

maintaining the data needed, and c including suggestions for reducing	election of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar OMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis l	is collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 01 DEC 2001		3. DATES COVERED				
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
The Modal-Vertica	al-Beam (MVB) Tra	nsmission Loss Ana	lysis	5b. GRANT NUMBER		
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) State Key Lab of Oceanic Acoustics, Hangzhou, China 310012 8. PERFORMING ORGANIZATION REPORT NUMBER						
9. SPONSORING/MONITO	RING AGENCY NAME(S) A		10. SPONSOR/MONITOR'S ACRONYM(S)			
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited				
13. SUPPLEMENTARY NO Also See: M001452	otes 2, The original docu i	nent contains color	images.			
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	CATION OF:	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	ABSTRACT UU	14	ALSI ONSIDLE FERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Main Scientific Objective

•Extraction the beam-averaged modal attenuation coefficient d_n

How to do?

Step 1: Perform vertical plane wave beamforming with VLA acoustic data

Step2: Estimate the beamformer output spectrum

Step3:Calculate propagation loss of two different ranges

Step4: Extract the beam-averaged modal attenuation coefficient from propagation loss

Why to do?

Be important for bottom back-scattering matrix extraction from reverberation data as well as propagation modeling

Theory Frame

The complex pressure in a range-independent waveguide can be written as:

$$p(r, z_j, z_s, \mathbf{w}) = \sum_{n=0}^{N-1} a_n(r) \mathbf{j}_n(z_j) \mathbf{j}_n(z_s) \exp[-i(\mathbf{w}t - k_n r + \mathbf{p}/4) - \mathbf{d}_n r]$$

For an ideal spatial filter response, the beamformer output can be written as:

$$b(r, \overline{\gamma}, z_s, \omega) = \sum_{\overline{m} - \Delta m/2}^{\overline{m} + \Delta m/2} a_n(r) \phi_n(z_s) \exp\left[-i(\omega t - k_n r + \pi/4) - \delta_n r\right]$$

The vertical beamformer output spectrum is

$$\begin{split} B(r,\gamma_{n},z_{s},\omega) &= \sum_{n} a_{n}^{2}(r)\phi_{n}^{2}(z_{s}) \exp(-2\delta_{n}r) \\ &+ 2\sum_{\substack{n = m \\ n \neq m}} a_{n}(r)a_{m}(r)\phi_{n}(z_{s})\phi_{m}(z_{s}) \exp(-(\delta_{n} + \delta_{m})r)\cos(\Delta k_{nm}r) \\ &= B_{1} + B_{2} \end{split}$$

Theory Frame(continued)

If $B_2 << B_1$, the beamformer output spectrum is written as:

$$B(r, \gamma_n, z_s, \omega) = \sum_n a_n^2(r) \varphi_n^2(z_s) \exp(-2\delta_n r)$$

We define the beam-averaged modal attenuation as follow:

$$exp(-2\delta_{\overline{m}}r) = \sum_{\overline{m}-\Delta m/2}^{\overline{m}+\Delta m/2} a_n^2(r) \phi_n^2(z_s) exp(-2\delta_n r) / \sum_{\overline{m}-\Delta m/2}^{\overline{m}+\Delta m/2} a_n^2(r) \phi_n^2(z_s)$$

Beam-averaged modal attenuation coefficient can be extracted by calculating the propagation loss for two ranges:

$$\delta_{n} = \frac{\log(tl(r_1, r_2))}{2(r_2 - r_1)}$$
 Where,
$$tl(r_1, r_2) = \frac{B(r_1, \gamma_n, z_s, \omega) \times r_1}{B(r_2, \gamma_n, z_s, \omega) \times r_2}$$

Numerical Simulation

We consider a Pekeris waveguide: H=103m, C_0 =1519m/s, C_b =1623m/s, ?_b=1.72, a_b=0.49 dB/m·kHz, f=1390Hz. The 103m VLA is covered all depth of water column with 1m space of adjacent element.

Table 1 Theoretical value and calculated value of	$\delta_{\rm n}$	in Pekeris waveguide (f=1390Hz)
---	------------------	---------------------------------

group	Center	Group of	Theory value of	Calculated value of δ_n	
	grazing angle	modes	o n	r1=10km,r2=20km,	r1=10km,r2=20km,
	angie			zs=20m	zs=40m
1	2.3; ã	1-8	3.367554e-6	-5.030152e-6	3.158571e-6
2	6.8; ã	9-16	2.051041e-5	3.249568e-5	1.507090e-5
3	11.5; ã	17-24	5.064872e-5	3.641855e-5	5.898481e-5
4	16.2; ã	25-32	9.020034e-5	9.085626e-5	8.014695e-5

Due to the effect of intermode interference, δ_n of group 1 can not be estimated correctly, and the precisions of estimated δ_n of other groups are poor.

Numerical Simulation(continued)

Fig.1 Effect of intermode interference (f=1390Hz, z_s=20m)

Fig.2 Effect of intermode interference (f=1390Hz, z_s=40m)

Effects of intermode interference can not be ignored

Numerical Simulation (continued)

How can we reduce the effects of intermode interference? One method is averaged the beamformer output spectrum with f in a narrow band to smooth second item B₂.

Fig.3 Effect of intermode interference (f=1340-1440Hz, z_s=20m)

Fig.4 Effect of intermode interference (f=1340-1440Hz, z_s=40m)

Numerical Simulation (continued)

Table 2 Theory value and calculated value of δ_n in Pekeris waveguide (f=1340-1440Hz)

	Center	Group	Tri 1	Calculated value o δ_n			
group	grazing angle	of modes	Theory value	r1=5km,	r1=10km,	r1=10km,	
	angic	modes	$\mathrm{of}\delta_{_{n}}$	r2=10km,	r2=20km,	r2=20km,	
				zs=40m	zs=40m	zs=20m	
1	2.3; ã	1-8	3.143104e-6	7.894265e-6	1.705594e-6	3.646730e-6	
2	6.8; ã	9-16	1.918959e-5	1.920825e-5	2.095787e-5	1.802004e-5	
3	11.5; ã	17-24	4.754961e-5	4.799638e-5	4.731562e-5	4.815836e-5	
4	16.2; ã	25-32	8.491166e-5	8.500221e-5	8.566655e-5	8.432893e-5	

Compared to Table 1, the attenuation coefficients of all groups can be estimated, the precision is also improved effectively.

Numerical Simulation (continued)

Fig. 5
SVP of ECS

All the calculated d_n are larger than the theoretical values. This is due to:

- (1) effect of inter mode interference
- (2) the short VLA covered the upper half part of the water column is not able to capture the lower modes properly and affected by higher modes by leakage.

Table 3 Theoretical value and calculated value of δ_n in simulated shallow waveguide (f=1340-1440Hz)

group	Center	Group of	Theory value of	Calculated value of δ_n	
	grazing	modes	$\delta_{\rm n}$	r1=10km,r2=20km,	r1=10km,r2=20km,
	angle			zs=40m, 103mVLA	zs=40m,57mVLA
1	2.3; ã	1-8	6.011310e-6	2.193981e-5	1.630264e-5
2	6.8; ã	9-16	2.272945e-5	3.075102e-5	4.356382e-5
3	11.5; ã	17-24	3.601585e-5	5.283101e-5	6.074829e-5
4	16.2; ã	25-32	8.115852e-5	8.317109e-5	1.071509e-4

ECS Real data analysis

Not used in this paper

ECS Real data analysis (continued)

Experiment setup

- •Receiving array: 60-element VLA, from 3m to 60m
- •Source: locating at different depths z_s=5m, 20m, 40m, and different ranges r=5km, 10km, 20km and 30~40km
- Water depth: H=103m
- Signal forms: 1100-2000Hz PRN, 630Hz CW, 630Hz PCW, 1250-2500HZ LFM, and explosive sources

In our talk, only signals of 1100-2000Hz PRN at ranges of 5km and 10km, depths of 20m and 40m are used to estimated beam-averaged δ_n now.

ECS Real data analysis (continued)

0.9 red---5km 0.8blue---10km zs=40m0.7 0.6 Amplitude 0.5 0.3 0.2 0.1 -40 -20 40 80 -100 20 60 100 angle(degree)

Fig.6 Vertical beam pattern with 20m source depth

Fig.7 Vertical beam pattern with 40m source depth

Table 4 The estimated value of δ_n in real shallow waveguide (f=1340-1440Hz)

,				
group	Center	Group of	Estimated value of δ_n	
	grazing	modes	r1=5km,r2=10km,	r1=5km,r2=10km,
	angle		zs=20m	zs=40m
1	2.3; ã	1-8	1.195583e-4	2.785835e-5
2	6.8; ã	9-16	2.447215e-4	1.224623e-4
3	11.5; ã	17-24	1.853596e-4	1.175435e-4
4	16.2; ã	25-32	2.953209e-4	1.934406e-4

Summary

- •If the intermode sum can be ignored, the beamformer output spectrum of two different ranges can be used to extract beam-averaged modal attenuation coefficient.
- •When vertical beamformer is performed in a narrow band not in single tone, the intermode sum can be reduced effectively, as proved by the numerical examples, but it is still large, should be decreased further.
- •From numerical simulation and ECS real data analysis results, we should extract beam-averaged model attenuation coefficient from data collected by longer VLA covered all water column in a broader band.

Thank you!